
The electronic structure of point defects in semiconductor alloys: simplified approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 2209

(http://iopscience.iop.org/0953-8984/4/9/014)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 11:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. Matter 4 (1992) 2209-2216. Printed in the UK 

The electronic structure of point defects in 
semiconductor alloys: simplified approximations 

Amita Das and Vijay A Singh 
Department of Physics, Indian Institute olTechnology, Kanpur, Uttar Pradesh u)8016. 
India 

Received20March 1991.infinalform24lune 1991 

Abstract. We present a simplified tight-binding-based coherent-potential approximation 
(CPA) formalism for the host electronicstructure of semiconductor alloys(e.g. Gal .,AI,As). 
Several schemes to locate the gap level due to point derects are discussed. In particular, we 
introduce a novel scheme: the deeplevelapproximation. Wealropoint out that thevacancy 
results in the CPA are identical with the simpler virtualsrystal approximation. We discuss 
our results by presenting numerical results in Ga, .,AI,As and GaAs, .,Sb. 

1. Introduction 

Semiconductor alloys (e.g. Ga,_&,As and GaAs,-,Sb,) may be regarded as a sub- 
stitutionally disordered system. The disordered alloy structure in which the occupancy 
of the anion or cation (or both) site is probablistic and can be replaced (using mean-field 
theories) by an effective ordered structure in which all the disordered sitesare equivalent. 
This replacement is, however,atthecostofseveralphysicalcharacteristicsoftheoriginal 
system. In the original disordered system there can be localization effects, which are 
largely washed out by the effective ordered crystal which replaces it. 

A realisticdescription of a disordered medium could be achieved by very large cluster 
calculations averaged over all possible configurations. This method is computationally 
feasibleonlyfor verysmall cluster sizes, whichprobablydonotdo justice to realsystems. 
In our work we have concentrated on the mean field and in particular on the coherent- 
potential approximation (CPA) description 111 of the disordered medium. 

The presenceof point defects in semiconductorsmay give rise to an energy level inside 
the forbidden bandgapofthe semiconductor. Technologically it becomesimportant that 
the defect which gives rise to the energy level should be identified so that measures could 
be taken to control its concentration in the semiconductor host. The gap level Z ,  due to 
a defect with potential strength V can be identified with the help of the well known 
Koster-Slater (KS) equation [2] .  

We endeavour to incorporate the effect of disorder in the alloy structure self- 
consistently using an approximate form of the CPA theory developed by us. In section 2 
we present the approximate form of the CPA for multiband realistic cases. We also 
attempt to put our formalism in perspective by discussing related work. In section 3 we 
show that, as far as the location of the energy level due to vacancies is concerned, both 
the CPA and the virtual-crystal approximation (VCA) give identical results. This suggests 
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that a perturbation approach to an ultra-deeplevel in a semiconductor can be employed. 
We call it the deep-level approximation (DLA). Section 4 contains the conclusion. 
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2. Formalism 

Weshall illustrate in thissection themethod adopted by us tointroduce ~ C P A  description 
of the disordered host. We are dealing with substitutional and not positional disorder of 
the lattice. Hence, the underlying symmetry of the lattice remains the same as that of 
the tetrahedral group (Td), The basis functions that we have chosen for our calculations 
decompose into four irreducible representations of the Td group: two are of A ,  type 
(each of dimensionality one) and the remaining two are of the type Tz (each of dimen- 
sionality three ). A, is a totally symmetric representation which is invariant under all 
group transformations. We shall refer to it as an S state. The irreducible representation 
T2 has the same transformation properties as the simple functions x ,  y and z under the 
Td symmetry operations. The basis functions for this irreducible representation could 
be chosen as qr, qy and ?pZ which have an axial symmetry about OX, OY and OZCartesian 
axes, respectively. We shall refer to them as P states. 

The Hamiltonian expressed in the above symmetry-adapted basis will be separated 
into two blocks as follows: 

HA, isamatrixofsize (2 X 2)correspondingto two A,  representations. HT, corresponds 
to the two T2 representations and is of size 6 x 6. The two representations of the A, as 
well as the T2 have, as their basis, functions which are centred either at the anion or at 
the cation site. Furthermore, the Hamiltonian does not couple the basis functions of T2. 
centred at the same site but having axial symmetry about a different axis. Thus HTZ 
reduces to three (2  x 2) matrices corresponding to basis functions having symmetry 
about x , y  and z axes, respectively. These three setsof matrices, however, are identical 
since the tetrahedral structure does not distinguish between the three axial directions. 

A disordered Hamiltonian can be broken into a random part V and a configuration- 
independent part W .  Thus 

H = W + V .  (2.2) 

The random part is assumed to be site diagonal hence 

H =  w+zv,. (2.3) 
I 

Here j represents the site index. We have chosen W to be our input VCA Hamiltonian, 
and we shall be incorporating the CPA corrections due to the random part X,V, to this. 
Thc random potential can be written as 

VI = I ~ R , ) ( E ,  - 3(mRlI .  (2.4) 
m 

Here m standards for an S-like state and three P-like T2 states. E, takes values E* or cB 
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depending on whether the atom A or B is occupying the site j .  .Fis the VCA energy which 
is given by 

E =  CAE* + CBEB. (2.5) 
Here cA and c, denote the concentration of A and B types of atom in the alloy. 

by an effective Green function 
The cPAformalism replaces the configuration-averaged one-electron Green function 

(2.6) Grf = 1/ (z  - Herr). 
Herr is defined as 

H , , = W + Z  (2.7a) 

(2.7b) 

Zi is termed the self-energy of the system and is obtained from the condition that the 
single-site scattering matrix ti when averaged over all configurations is zero. I can be 
viewed as a block diagonal matrix; each block is identified by a particular site j and is 
of size (8 X 8) for the above-mentioned eight states. Furthermore, the translational 
symmetry of the averaged crystal ensures that each block is identical. Thus Bloch’s 
theorem can be invoked and Z can be represented in a reduced Bloch space of size 
(8 x 8). The tetrahedral symmetry further deconhposes Z into two blocks of A, and T2 
representations. We write Z as 

% A ,  

s= I, ZT21 

where the superscripts a and c stand for anion and cation, respectively 

ZT2y 

Each of the ZT, , IT, , IT> can be further decomposed into cation and anion subspaces 
as has been shown for E..,, . The off-diagonal elements of Z have been neglected, which 
is in agreement with the approximation invoked by Chen and Sher [3]. 

Symmetry about the x ,  y and L axes further ensures that 

ZT, = XTgy = Z T h  = Z T , ,  

The CPA equation for this multiband case is a matrix equation of the form 
- 
2 ( z )  = -[.EA - QZ)] &)[.EB -%@)I. 

%r.d(Z) = - [&Ar,d - ~ , . d ( z ) l F ~ . d ( z ) [ ~ g , , d  - f r , d ( z ) 1 ~  

(2.8) 

(2.9) 

The above-mentioned symmetry reduces it to a set of four coupled scalar equations 

Here the subscript r refers to the symmetry and the subscript d to the cation or anion 
subspaces. These equationsarecoupledvia the Green function. An approximate method 
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of decoupling the above equations can be devised using the partitioning technique of 
Lowdin 141. 

The component Green function F,,d can be evaluated from the component density 
of states by the following equation: 
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(2.10) 

Using equations (2.9) and (2.10) the CPA corrections to the Green function can be 
determined. 

Perhapsit is worthwhile to put ourproposedform ofthecpa for alloy semiconductors 
into perspective. An early work on this subject is by Sen and Cohen [5] who applied it to 
a model two-(s)bandsemiconductor. Stroud andEhrenreich [6] applied a c ~ ~ f o r m a l i s m  
using pseudopotentials to  calculate the electronic structure of Si-Ge alloys. Chen and 
Sher 171 employed a bond-orbital-model-based CPA to calculate the valence bands of 
several semiconductor alloys. They concluded that the CPA should replace earlier the- 
ories such as the VCA since the band-gap bowing parameter is significantly influenced by 
alloy disorder. In another pioneeringeffort, Spicer etaZ[8] demonstrated the feasibility 
of the CPA by making detailed comparison with experiment for the alloy Hgl-,CdxTe. 
They employed atomic orbitals reconstructed from empirical pseudopotentials. Sub- 
sequently the present authors together with Krishnamurthy [9] employed a similar 
methodology to Si-Ge alloys. Besides one-electron properties such as the density of 
states they investigated theelectron drift mobility. Myles and co-workers[lO] developed 
a tight-binding CPA formalism and applied it to semiconductor alloys. A tight-binding- 
basedmolecuIarc~n(~c~~)formal i sm wasproposed byHassera/[ 111. Aperturbational 
method for impurity levelsplitting basedon Roth's [ 121 effective-mediumapproximation 
(EMA) was proposed by Hasbun and Roth [I31 for impurities in GaAsxPI-,. The import- 
ance of local environment effects on a point defect in semiconductor alloys was also 
emphasized by Mariette eta/[  141. They proposed asinglecpn methodology for individual 
bands a (a = T, XI aiid L). Our approach employs the Vogl el a/ [E] ten-band tight- 
bindingparametersandissimilar to that of Mylesandco-workers[lO]. It differs indetail 
from [lo] and has a simplified structure. 

Next we consider the problem of point defects in alloys. Point defects could be either 
substitutional impurities or vacancies present in the disordered alloy semiconductors. 

The defect potential caused by the substitution of an impurity atom for a host atom 
has the following three distinct contributions: 

(i) a short-range central cell potential; 
(ii) a long-range Coulomb potential; 
(iii) an electron-lattice interaction caused by the lattice relaxation around the 

impurity. 

We shall ignore the screened Coulomb potential and assume a simple realistic model 
in which there is no lattice relaxation. We shall deal essentially with the central cell 
potential which is the difference between the atomic potentials of the impurity and the 
host atom. 

Thesingle-sitedefectcanbeidentifiedwith V,inequation(2.3). In thiscasetheindex 
j corresponds to a particular site and is not a running index over all sites. 

Thus the defect potential can be made block diagonal in this symmetry-adapted 
basis;itcontainsone(2 X 2) al  symmetqmatrkandthree(2 x 2)t,symmetrymatrices. 
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The three (2 X 2) P-type symmetry matrices will be identical. The defect potential is 
then 

1. €:,imp - ~ : , i w s t  vrmp - vios vr. = 
‘.I 

[vlmp - vLost E:.imp - E:,hori 

r represents the symmetry and i and j = {c, a} correspond to the cation and anion, 
respectively. 

We approximate the atomic energy difference between two atoms in a solid to be 
similar to the difference between free atoms. We also neglect the off-diagonal elements 
as they scale as the inverse square of the bond length and we have accounted for these 
in our VCA Hamiltonian W. Thus, if the impurity is at the cation site, then 

The bound-state energy E,, can be obtained by the solution of the following K-S-type 
equation: 

l I v r . d  = Fr.d. (2.11) 

3. The deep-level approximation for defects 

If the defect level is a simple vacancy on a cation or an anion sublattice, then the 
corresponding defect potential is infinity. From equation (2.11) we see that the defect 
level due to vacancy will then be given by the zeros of F,.d. Here r denotes the symmetry 
of the level and d the sublattice which has a vacancy as a defect. 

Substituting the value of Fr,d in equation (2.9) we get the value of Z,,d, which is zero. 
One thus observes that for the vacancy level the CPA result is identical with the )‘CA 
result. This suggests that a perturbation approach to an ultra-deep level in alloy semi- 
conductor can be employed. This is the DLA which is obtained from the self-consistent 
CPA equation by retaining first-order terms in the inverse defect potential l/V. 

The self-consistent CPA equation is (dropping the subscripts for lattice and symmetry) 

(3.1) 

F(Zd) = 1/v = 6 (3.2) 
where 6 is a small parameter. Thus 

Retaining first-order terms in 6 .  one gets 

Z(zd) = - ~ E ~ E ~ .  (3.4) 
Moreover 

F(zd) = FVCA(2’) 

where 

Zd = 2’ - Z(Zd) 

(3.5) 
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, 

Figure 1. A plot of the inverse defect potential 
strength versus the t1 cation defect level in the fun- 
damental gap of GaAs&b.,: -, results obtained 
by using the CPA;-.--., results obtained by using 
the DLA. Note that the vacancy level shown by an 
arrow is predicied at 0.33 eV by both the theories. 

Figure 2. A plot of the inverse defect potential 
strength versus the 1: anion defect level in the fun- 
damental gap of Gq,8AI,,,2As: -, results obtained 
by using the CPA: -.-., results oblained by using 
the DLA. Note that the vacancy level shown by an 
arrow is predicted ai I .35 eV by both the theories. 

or 

zd = I' + (3.6) 
Let z, be the location of the defect level for the vacancy. Expanding FvcA(z') about 
FvCA(z,), one gets, on neglecting higher powers. 

FVCA(Z') = FVCA(G) + (2' - z~)FLcA(zJ. (3.7) 
We have chosen 6 to be sufficiently small; hence z' can be assumed to be quite close to 
zE.  However, FVCA(zC) = 0, since z, is by definition a vacancy level and the VCA result is 
exact for it. Hence 

6 = (I '  - I , ) F ~ C * ( I C ) .  

zd = z, + 6/FLcA(z,) + ~ E ~ E ~ .  

(3.8) 

(3.9) 

From equations (3.13) and (3.14), 

Thus knowing the vacancy level and the slope of the VCA Green function at the vacancy 
level the deep defect level for a given defect potential can be directly read from equation 

Figure 1 depicts the t2  cation defect level in the fundamental gap of GaAso,8Sbo,2. 
The cation vacancy level for this system is at 0.33 eV above the valence band edge. The 
agreement between the DLA and the CPA is excellent near zvBc. 

Figure 2 depicts a similar comparison between the DLA and the CPA for the t 2  anion 
defect level in the fundamental gap of Gq,8A10.2A~. The DLA results deviate from the 
CPA results as we move away from the vacancy level which is at z,,, = 1.35 eV, Figure 3 
shows a t 2  cation level in G~,,AI,,&s. 

As demonstrated earlier. the VCA and CPA give identical results for the vacancy level 
in an alloy semiconductor. It is worthwhile exploring the differences between the two 
for a general gap level. It must be noted that, when the host energies for the two species 
are close to each other, then the VCA ought to be satisfactory (small-scattering regime). 
Let us consider the case of GaAso,8Sbo,2. From the parameters given by Vogl et a l [15]  
we observe that the cation p-orbital energy E(p, c) for GaAs and GaSb differ only by 

(3.9). 
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Figure 3. A plot of the inverse defect potential 
strength versus the t1  cation defect level in the fun- 
damental gap of Ga,.,Al,4As: -, results obtained 
by using the CPA; -.-.. results obtained by using 
the DLA. Note that the vacancy level shown by an 
arrow is predicted at 0.39 eV by both the theories. 
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Figurc 4. A plot of detect potential strength versus 
the t?cationdefectlevelinGaA~,,xSb,,,,asgiven by the 
CPA (-) and the VCA (---). The common vacancy 
level predicted by the theories is shown by an arrow 
at 0.327 eV. 

Flgure 5. A plot of defect potential strength versus 
the a ,  cation defect level in Ga,,,AI,,.,As as given by 
the CPA (-) and the VCA (---). Note that there is 
no vacancy level within the fundamental gap. 

.*..Io -"o.i 0.0 L. 0.. 2 0  8.2 1.1 

20%. Thus in figure 4 the defect level as given by the CPA is almost indistinguishable 
from that given by the VCA. 

When the energy difference between the two species is large, we expect the CPA and 
the VCA to differ considerably. This is borne out by the plot in figure 5 in which the a, 
cation defect is given for Ga, -,AI,As. The energy E(s ,  c) differs for two systems GaAs 
and AIAs, in this case by 56%. 

4. Conclusion 

We have presented simple mean-field approximations to account for the effect of 
disorder on the electronic structure of point defects in semiconductor alloys. The work 
can be extended in several directions, formal and otherwise. Formally, one may employ 
the Hellmann-Feynman theorem tocalculate the totalenergy ofand the forceson point 
defects. This work could then address issues, such as metastability, which are important 
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for the DX centre [16, 171. It would also be desirable to include charge consistency in 
the sense of the local-density approximation. This would, however, destroy the inherent 
simplicity of our approach. It is perhaps worthwhile to think of our approach as a 
methodology for quick and reliable estimates. 
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